Phân biệt Mono, Poly và Thin film cho tấm pin Năng lượng mặt trời

Monocrystalline Silicon Solar Cells

Solar cells made of monocrystalline silicon (mono-Si), also called single-crystalline silicon (single-crystal-Si), are quite easily recognizable by an external even coloring and uniform look, indicating high-purity silicon, as you can see on the surface.

Monocrystalline solar cells are made out of silicon ingots, which are cylindrical in shape. To optimize performance and lower costs of a single monocrystalline solar cell, four sides are cut out of the cylindrical ingots to make silicon wafers, which is what gives monocrystalline solar panels their characteristic look.

A good way to separate mono- and polycrystalline solar panels is that polycrystalline solar cells look perfectly rectangular with no rounded edges.

Advantages

Monocrystalline solar panels have the highest efficiency rates since they are made out of the highest-grade silicon. The efficiency rates of monocrystalline solar panels are typically 15-20%. SunPower produces the highest efficiency solar panels on the U.S. market today. Their E20 series provide panel conversion efficiencies of up to 20.1%.  SunPower has now released the X-series at a record-breaking efficiency of 21.5%.

Monocrystalline silicon solar panels are space-efficient. Since these solar panels yield the highest power outputs, they also require the least amount of space compared to any other types. Monocrystalline solar panels produce up to four times the amount of electricity as thin-film solar panels.

Monocrystalline solar panels live the longest. Most solar panel manufacturers put a 25-year warranty on their monocrystalline solar panels.

Tend to perform better than similarly rated polycrystalline solar panels at low-light conditions.

The efficiency of individual solar cells is higher than for entire solar panels/modules. For a complete overview over how the efficiency rates of the various solar cell technologies have advanced since 1975 check out Best Research-Cell Efficiencies (NREL). The efficiency rates in this article refer to solar panel/module efficiencies. Check out What Factors Determine Solar Panel Efficiency? for more information on this subject.

Disadvantages

Monocrystalline solar panels are the most expensive. From a financial standpoint, a solar panel that is made of polycrystalline silicon (and in some cases thin-film) can be a better choice for some homeowners.

If the solar panel is partially covered with shade, dirt or snow, the entire circuit can break down. Consider getting micro-inverters instead of central string inverters if you think coverage will be a problem. Micro-inverters will make sure that not the entire solar array is affected by shading issues with only one of the solar panels.

The Czochralski process is used to produce monocrystalline silicon. It results in large cylindrical ingots. Four sides are cut out of the ingots to make silicon wafers. A significant amount of the original silicon ends up as waste.

Monocrystalline solar panels tend to be more efficient in warm weather. Performance suffers as temperature goes up, but less so than polycrystalline solar panels. For most homeowners temperature is not a concern.

============================

Polycrystalline Silicon Solar Cells

The first solar panels based on polycrystalline silicon, which also is known as polysilicon (p-Si) and multi-crystalline silicon (mc-Si), were introduced to the market in 1981. Unlike monocrystalline-based solar panels, polycrystalline solar panels do not require the Czochralski process. Raw silicon is melted and poured into a square mold, which is cooled and cut into perfectly square wafers.

Advantages

The process used to make polycrystalline silicon is simpler and cost less. The amount of waste silicon is less compared to monocrystalline.

Polycrystalline solar panels tend to have slightly lower heat tolerance than monocrystalline solar panels. This technically means that they perform slightly worse than monocrystalline solar panels in high temperatures. Heat can affect the performance of solar panels and shorten their lifespans. However, this effect is minor, and most homeowners do not need to take it into account.

Disadvantages

The efficiency of polycrystalline-based solar panels is typically 13-16%. Because of lower silicon purity, polycrystalline solar panels are not quite as efficient as monocrystalline solar panels.

Lower space-efficiency. You generally need to cover a larger surface to output the same electrical power as you would with a solar panel made of monocrystalline silicon. However, this does not mean every monocrystalline solar panel perform better than those based on polycrystalline silicon.

Monocrystalline and thin-film solar panels tend to be more aesthetically pleasing since they have a more uniform look compared to the speckled blue color of polycrystalline silicon.

===========================

Thin-Film Solar Cells (TFSC)

Depositing one or several thin layers of photovoltaic material onto a substrate is the basic gist of how thin-film solar cells are manufactured. They are also known as thin-film photovoltaic cells (TFPV). The different types of thin-film solar cells can be categorized by which photovoltaic material is deposited onto the substrate:

Amorphous silicon (a-Si)

Cadmium telluride (CdTe)

Copper indium gallium selenide (CIS/CIGS)

Organic photovoltaic cells (OPC)

Depending on the technology, thin-film module prototypes have reached efficiencies between 7–13% and production modules operate at about 9%. Future module efficiencies are expected to climb close to the about 10–16%.

The market for thin-film PV grew at a 60% annual rate from 2002 to 2007. In 2011, close to 5% of U.S. photovoltaic module shipments to the residential sector were based on thin-film

Advantages

Mass-production is simple. This makes them and potentially cheaper to manufacture than crystalline-based solar cells.

Their homogenous appearance makes them look more appealing.

Can be made flexible, which opens up many new potential applications.

High temperatures and shading have less impact on solar panel performance.

In situations where space is not an issue, thin-film solar panels can make sense.

Disdvantages

Thin-film solar panels are in general not very useful for in most residential situations. They are cheap, but they also require a lot of space. SunPower`s monocrystalline solar panels produce up to four times the amount of electricity as thin-film solar panels for the same amount of space.[3]

Low space-efficiency also means that the costs of PV-equipment (e.g. support structures and cables) will increase.

Thin-film solar panels tend to degrade faster than mono- and polycrystalline solar panels, which is why they typically come with a shorter warranty.

Solar panels based on amorphous silicon, cadmium telluride and copper indium gallium selenide are currently the only thin-film technologies that are commercially available on the market.

Source: https://energyinformative.org



  • Ngày: 2019-07-06
  • Lượt xem: 81